An Spectroscopic Investigation of Complex Formation in Nickel Sulphate-Aliphatic Amine System

By PADMAJA SHUKLA and GOPAL NARAIN

Summary

Visible absorption spectra of Nickel (II) sulphate and various aliphatic amines were analysed, in order to extract information regarding each of amine Nickel (II) complex. The presence of six different complexes i.e., mono, di, tri, tetra, penta and hexamines have been indicated by the shift of absorption maxima for these. The energy changes of complexes due to exchange of water ligands with amines have been calculated and an interpretation is offered for this shift in the observed position of absorption maxima.

Introduction

A survey of the literature shows that ammonia complexes of nickel (II) sulphate have been investigated in very great detail. However, aliphatic amines, have been given very little attention and only a few such complexes are known¹)²). In the present paper, the results obtained by an systematic spectroscopic examination of nickel (II) sulphate solutions, with different molar quantities of various amines are reported. Amines used are, methyl, ethyl, propyl, butyl, amyl, dimethyl, diethyl, dipropyl and dibutyl amines.

Experimental

The spectra were obtained with a unicam SP 500 recording spectrophotometer on 2.10^2 M nickel sulphate solutions with different molar quantities of amines. The pH of the solution was buffered at low value with approximately 2M ammonium sulphate solution.

Results

The value of the calculated absorption maxima, energy in K. Cals absorbed per mole and intensity of various complexes are being given in the Tables 1 and 2.

¹) W. PETERS, Z. anorg. Chem. 89, 191 (1914).

²) F. G. MANN, J. chem. Soc. London 2908 (1927).

¹⁹ J. prakt. Chem. 4. Reihe, Bd. 38.

Amine used	Monoa	mine complex	Diamine complex				
minic usea	λmax	Е	ε_0	λmax	E	ε ₀	
1. Ammonia	V,	930 mµ.	$1.285 imes10^{5}$	10	928 mµ	1.288×10^{5}	12
	\mathbf{v}_{2}	825 mµ	$1.449 imes10^5$	10	820 mµ.	1.458×10^{5}	10
	$\tilde{V_3}$	555 mµ	$2.153 imes10^5$	7	550 mµ.	$2.172 imes 10^{5}$	7
	V_4	400 mµ	$2.987 imes10^{5}$	8	398 mµ	$3.003 imes 10^5$	6
2. Methylamine	V ₁	930 mµ	$1.284\! imes\!10^{5}$	9	925 mµ	$1.292 \! imes \! 10^5$	9
	V_2	825 mµ	$1.449 imes 10^5$	9	820 mµ	$1.458 imes 10^5$	- 9
	V_3	560 m μ	$2.134 imes10^5$	6	555 mµ	$2.153 imes 10^{5}$	6
	V_4	400 mµ	$2.987 imes10^{5}$	2	398 mµ	$3.003 imes 10^5$	2
3. Ethylamine	V_1	930 mµ	$1.295\! imes\!10^{5}$	10	928 mµ	$1.288\! imes\!10^{5}$	10
	V_2	820 mµ	$1.458 imes10^{5}$	10	818 mµ	1.461×10^{5}	10
	V_3	550 mµ.	$2.172 imes10^5$	6	545 mµ.	$2.193 imes 10^{5}$	6
	V_4	400 mµ	$2.987 imes10^{5}$	5	398 mµ	$3.003 imes 10^{5}$	5
4. Propylamine	V_1	928 mµ	$1.288 imes 10^{5}$	8	925 mµ	$1.292\! imes\!10^5$	8
	V_2	830 mµ	$1.440 imes 10^{5}$	8	825 mµ	$1.449\! imes\!10^{5}$	8
	V_3	540 mµ	$2.213 imes10^5$	2	538 mµ	$2.221\! imes\!10^5$	2
	V_4	395 mµ.	$3.028\! imes\!10^5$	1	390 mµ	$3.064 imes 10^5$	1
5. Butylamine	V ₁	925 mµ	$1.292\! imes\!10^5$	7	920 mµ	$1.299 imes 10^{5}$	7
	V_2	830 mµ	$1.440 imes 10^{5}$	7	825 mµ.	$1.499 imes 10^{5}$	7
	V_3	545 mµ	$2.193 imes 10^{5}$	6	540 mµ	$2.213 imes 10^{5}$	6
	V_4	390 mµ	$3.064 imes 10^5$	5	385 mµ	$3.103 imes 10^{5}$	5

\mathbf{Ta}	ble	1

Table 2

Amine used	Monoa	mine complex	Diamine complex				
		λmax	E	ε_0	$\lambda \max$	E	ϵ_0
1 Amylamine	V.	935 mu	1 278 \> 105	8	939 mu	1 282 \(\col_105)	8
1. Imylumite	$\mathbf{v}_{\mathbf{v}}^{\mathbf{i}}$	830 mu	1.240×10^{5}		825 mu	1.202×10 1.449×10^{5}	7
	\mathbf{v}_{2}^{2}	550 mu	1.110×10 1 172 × 10 ⁵	6	545 mu	2.193×10^{5}	ß
	V_4	390 mµ	3.064×10^{5}	8	385 mμ	3.103×10^{5}	8
2. Dimethylamine	V,	930 mµ	$1.285 imes 10^{5}$	7	928 mu	1.288×10^{5}	7
2	V2	820 mµ	$1.458 imes10^5$	7	820 mµ	$1.458 imes10^5$	7
	$\bar{v_s}$	550 mµ	2.172×10^{5}	6	545 mµ	$2.193 imes10^5$	6
	V ₄	390 mµ	$3.064 imes10^5$	6	385 mµ	$3.103 imes10^5$	6
3. Diethylamine	V ₁	930 mµ	$1.285 imes 10^{5}$	10	928 mµ	$1.288 imes 10^{5}$	10
-	V_2	825 mµ	$1.449 imes 10^{5}$	9	825 mµ	$1.449 imes 10^5$	9
	V_3	560 m μ	$2.134 imes 10^{5}$	6	555 mµ	$2.153\! imes\!10^5$	6
	V_4	400 mµ	$2.987 imes10^{5}$	4	395 mµ	$3.025 imes 10^5$	4
4. Dipropylamine	V,	932 mµ	$1.282\! imes\!10^5$	10	930 mµ	$1.285 imes 10^{5}$	10
	V_2	820 mµ	1.458×10^{5}	10	818 mµ.	$1.461 imes 10^{5}$	10
	V_3	540 mµ	$2.213 imes10^5$	8	538 mµ.	$2.221 imes10^5$	8
	V_4	400 mµ	$2.987 imes10^5$	6	395 mµ	$3.025\! imes\!10^5$	6

Triamine complex			Tetramine complex			Penta	mine compl	Hexamine complex			
λmax	Е	ε_0	$\lambda \max$	E	εo	λ max	E -	ε_0	λmax	Е	E ₀
	$1.292 imes 10^{5}$	12	920 mµ	$1.299 imes 10^{5}$	10	920 mµ	$1.299 imes 10^{5}$	10	915 mµ	$1.307 \! imes \! 10^5$	10
818 mµ	1.461×10^{5}	10	815 mµ	$1.466 imes10^5$	10	810 mµ	$1.475 imes 10^{5}$	10	805 mµ	1.484×10^{5}	10
545 mµ	$2.193\! imes\!10^5$	7	545 mµ.	$2.193 imes10^5$	7	540 mµ	$2.213 imes10^5$	7	520 mµ	$2.299 imes10^5$	9
395 mµ	$3.025 imes 10^5$	6	390 mµ	$3.064 imes 10^{5}$	8	385 mµ	$3.103 imes 10^{5}$	8	380 mµ	$3.145 imes 10^{5}$	6
925 mµ	$1.292 imes 10^5$	10	923 mµ	$1.295 imes 10^{5}$	12	920 mµ	$1.299 imes10^{5}$	10	918 mµ	$1.302 imes 10^5$	9
818 mµ	$1.461 imes 10^5$	9	815 mµ	$1.466 imes 10^{5}$	9	815 mµ	1.466×10^{5}	9	810 mµ	$1.475 imes 10^{5}$	8
$550 \text{ m}\mu$	$2.172 imes 10^5$	6	545 mµ	2.193×10^{5}	6	540 mµ	$1.213 imes10^5$	6	530 mµ	2.254×10^{5}	6
395 mµ	$3.025 imes 10^5$	2	39 0 mµ	3.064×10^{5}	2	385 mµ	$3.103 imes10^5$	2	380 mµ	3.145×10^{5}	2
925 mµ	$1.292\! imes\!10^{5}$	12	920 mµ	$1.299 imes 10^{5}$	12	915 mµ	$1.307\! imes\!10^5$	10	913 mµ	$1.309 imes 10^{5}$	9
$815 \text{ m}\mu$	$1.466 imes 10^5$	10	815 mµ	1.466×10^{5}	10	810 mµ	$1.475 imes 10^5$	10	805 mµ	1.484×10^{5}	10
540 mµ	$2.213 imes 10^5$	6	535 mµ	2.234×10^{5}	6	530 mµ	2.254×10^5	6	525 mµ	2.276×10^{5}	6
395 mµ	$3.025 imes10^5$	5	390 mµ	$3.064 imes 10^{5}$	5	385 mµ	$3.103 imes10^5$	5	380 mµ	3.145×10^{5}	5
923 mµ	$1.295 imes10^5$	10	918 mµ	$1.302 imes10^5$	12	915 mµ	$1.307 imes10^{5}$	9	910 mµ	$1.313 \! imes \! 10^5$	12
82 0 mµ	$1.458 \! imes \! 10^5$	8	815 mµ	$1.466 imes 10^{5}$	8	810 mµ	$1.475 imes 10^{5}$	8	805 mµ	1.484×10^{5}	8
535 mµ	$2.224 imes 10^{5}$	2	530 mµ	$2.254\! imes\!10^5$	4	525 mµ	$2.276 imes 10^{5}$	2	520 mµ	$2.299 \! imes \! 10^5$	2
385 mµ	$3.103 imes 10^{5}$	1	380 mµ	$3.145 imes10^5$	1	375 mµ	$3.187 imes 10^{5}$	1	37 0 mµ	$3.230 imes 10^{5}$	1
920 mµ	$1.299 imes10^5$	10	918 mµ	$1.302 imes 10^5$	12	915 mµ	$1.307 imes 10^5$	10	913 mµ	$1.308\! imes\!10^5$	9
820 mµ	1.458×10^{5}	7	820 mµ	$ 1.458 \times 10^{5} $	7	815 mµ	$1.466 imes10^5$	7	810 mµ	$1.475 imes 10^{5}$	7
538 mµ	$2.234 imes10^5$	6	530 mµ	$2.254 imes10^5$	6	525 mμ	$2.276 \times 10^{\rm 5}$	6	520 mµ	2.299×10^{5}	6
$385 \ m\mu$	$3.103 imes10^5$	5	380 mµ	3.145×10^{5}	5	375 mµ	$3.187 imes10^{5}$	5	370 mµ	3.230×10^{5}	5

Trian	nine comple	x	Tetramine complex			Penta	mine compl	Hexamine complex			
$\lambda \max$	Е	ε_0	$\lambda \max$	Έ	ε_0	$\lambda \max$	Е	ε_0	$\lambda \max$	Έ	ε_0
930 mu	1.285×10^{5}	9	930 mu	1.285×10^{5}	12	925 mu	1.292×10^{5}	10	920 mu	1.299×10^{5}	9
820 mµ	1.458×10^{5}	7	820 mµ	1.458×10^{5}	7	815 mµ	1.466×10^{5}	7	810 mµ	1.475×10^{5}	7
540 mµ	$2.213 imes10^5$	6	535 mµ.	$2.234 imes 10^{5}$	6	530 mμ	2.254×10^{5}	6	525 mµ.	$2.276 imes 10^{5}$	6
380 mµ	$3.145 imes 10^{5}$	8	375 mµ	$3.187 imes 10^{5}$	8	370 mµ.	$3.230 imes 10^{5}$.8	370 mµ	$3.230 imes10^5$	8
925 mµ	$1.292 \! imes \! 10^5$	10	923 mµ	$1.295 \! imes \! 10^5$	9	920 mµ	$1.299 \! imes \! 10^5$	12	915 mµ	$1.307\! imes\!10^{5}$	10
815 mµ	$1.466 imes 10^{5}$	7	815 mµ	$1.466 imes10^5$	7	810 mµ	$1.475 imes 10^{5}$	8	805 mµ	1.484×10^{5}	8
540 mµ	$2.213 imes 10^{5}$	6	535 mµ	$2.234 imes 10^{5}$	7	530 mµ	$2.254 imes10^5$	7	525 mµ	$2.276\! imes\!10^5$	7
385 mµ	$3.103 imes 10^{5}$	5	380 mµ	3.145×10^{5}	6	380 mµ	$3.145 imes 10^{5}$	5	375 mµ	$3.187 imes 10^{5}$	5
925 mµ	$1.292 imes 10^{5}$	2	920 mµ	$1.299 imes10^5$	8	918 mµ	$1.302 imes 10^5$	9	915 mµ	$1.307 imes10^5$	7
825 mµ	$1.449 \! imes \! 10^5$	9	820 mµ	1.458×10^{5}	9	815 mµ	1.466×10^{5}	9	810 mµ	$1.475 imes10^5$	7
550 mµ	$2.172 imes 10^5$	6	545 mµ	2.193×10^{5}	6	540 mµ	$2.213 imes10^5$	6	535 mµ	2.234×10^{5}	6
395 mµ	$3.025 imes10^5$	4	390 mµ	3.064×10^{5}	4	385 mµ	$3.103 imes 10^5$	4	380 mµ	$3.145 imes 10^{5}$	4
928 mµ	$1.288\! imes\!10^5$	12	928 mµ	$1.292 imes 10^{5}$	10	923 mµ	1.295×10^5	12	920 mµ	$1.299\! imes\!10^5$	10
815 mµ	$1.466 \! imes \! 10^{5}$	10	810 mµ	1.475×10^{5}	9	805 mµ	1.484×10^{5}	9	805 mµ	1.484×10^{5}	10
535 mμ	2.234×10^{5}	8	530 mµ	$ 2.254 \times 10^{5} $	6	525 mµ	$2.276 imes 10^{5}$	6	$520 \text{ m}\mu$	$ 2.299 \times 10^{5} $	6
390 mµ	3.064×10^{5}	6	390 mµ	3.064×10^{5}	4	385 mµ	$3.103 imes10^5$	2	380 mµ	$3.145 imes 10^{5}$	2

Discussion

It is reported that complex formation in solution is a stepwise process and many of the complexes, so formed are quite stable so that they can be studied upto certain extent³). It has therefore been found that gradual addition of ammonia to a nickel sulphate solution, results in the gradual displacement of water and formation of mono, di, tri, tetra, penta and hexamines.

If other aliphatic amines are added to the nickel sulphate solution, it has been observed that the colour of the solution changes from green to blue and ultimately becomes deep ink blue and any further addition of amine causes no change in the intensity of the amine. For spectroscopic study of the solutions exactly one mole of various amines are added to nickel sulphate solution in water. Since et each integral ratio a number of species exist in appreciable quantity, the value of the actual absorption maxima, was found as in case of copper complexes⁴), by plotting true absorptivity against wavelength, latter being obtained by solving the equation

$$AS_i^{\lambda} = b \sum_k a_k^{\lambda} C_{ki}$$

where AS_i^{λ} is the absorption at wavelength λ for the ith $(Amine)_0/(Nickel)_0$ ratio, b the cell thickness, a_k^{λ} is the absorptivity index for the kth species at λ and C_{ki} is the concentration of the kth compound at the ith ratio. Tables 1 and 2 summarise the spectral maxima for the complexes.

Each complex exhibits 4 absorption bands and their relative band shifts if compared to nickel sulphate by the addition of 1, 2, 3, 4, 5 and 6 molar quantities of amine solutions, indicate the gradual formation of mono, di, tri, tetra, penta and hexamine nickel (II) complexes. Later on, no change occurs in the position of any band, even if amine is added in excess. These results indicate the formation of these six compounds, as shown below, but actually at each ratio, a mixture and not a single ion is supposed to be present.

The energy in K. Cals absorbed per mole of these complexes for each absorption band, has been calculated by the equation $E = N h C/\lambda$ where N is AVOGADRO'S Number, h is PLANK'S constant, C velocity of light and

³) J. BJERRUM, Metal amine formation in aqueous solution, F. Hasse & Son, 1941.

⁴⁾ GRANT and KOLLRACK, J. Inorganic and Nucl. Chem. 23, 25 (1961).

 λ the wave length of complex under consideration. It is observed that energy of these nickel amine complexes increases gradually as the water ligands in nickel (II) ion are replaced by amines. Further it is noted that these energy values in all the complexes of all the various amines are constant and that the increasing molecular weight of amine causes no change in the position of absorption maxima.

Nickel (II) sulphate exists in solution as the well known green $[Ni(H_2O)_6]^{+2}$ ion. In an octahedral field where the metal exhibits its maximum co-ordination number of 6 on the basis of energy level diagram, the terms arising from the d⁸ ground state are

 $3d^8 = 3F$, 1D, 3P, 1G and 1S.

Theoretically only three spin allowed transitions are expected, which occur in the spectra of all octahedral nickel (II) complexes. Many times the middle band of the spectrum is often splitted, due to spin-orbit coupling which mixes the $3T_{2g}$ (F) and 1 Eg states, which are very close in energy at the $\Delta 0$ value given by $6H_2O$. These bands are further characterised by very low intensity values.

These four bands are represented as V_1 , V_2 , V_3 and V_4 bands and are assigned as

$$\begin{split} &V_1 - 3A_{2g} \rightarrow 3T_{1g} \\ &V_2 - 3A_{2g} \rightarrow 3T_{1g} \ (F) \\ &V_3 - 3A_{2g} \rightarrow 3T_{1g} \ (P) \\ &V_4 - 3A_{2g} \rightarrow 3T_{eg}. \end{split}$$

In case of hexaquo nickel (II) ion the solution is green in colour and the theoretical bands are observed at $V_1 = 9000 \text{ Cm}^{-1}$, $V_2 = 14000 \text{ Cm}^{-1}$, $V_3 = 17500 \text{ Cm}^{-1}$ and $V_4 = 25000 \text{ Cm}^{-1}$. When amines are added, the replacement of water ligands with amines, which lie toward the stronger end of spectrochemical series, begins and solution assumes a blue colour. The positions of the various absorption bands shifts to lower wavelength or higher frequency region, with a subsequent increase in ligand field than water and thus gives rise to an hyposochromic effect that causes the absorption bands to shift to lower wavelength, as in case of copper-amine complexes. This ultimately gives rise to a change in the colour of the solution, from green to faint blue and then to ink blue in hexamine, after which no change occurs. The energy now available for the electron to jump from one level into another is consequently increased, but this can not cause any aparent change in the magnitude of the transitions, because the above mentioned four transitions are the only spin-allowed transitions for a bivalent nickel ion in an octahedral field. Further the ratio V_3/V_1 is also equal to 1.82 for

all octahedral complexes irrespective of the ligand used for co-ordination⁵) is being observed here as well. It is thus concluded that the deepening of the colour in this particular case is due to the stronger ligand field environment produced around the metal, by the replacement of water ligands with various amines and the spectra confirm that metal remains hexaco-ordination in all the cases.

⁵) C. FERNELIUS and W. MANCH, J. chem. Educat. 37, 193 (1960).

Lucknow (India), Chemistry Department, Lucknow University.

Bei der Redaktion eingegangen am 22. Januar 1966.